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Abstract We study asymptotics as t — oo of solutions to a linear, parabolic system of
equations with time-dependent coefficients in  x (0, co), where €2 is a bounded domain.
On 922 x (0, 00) we prescribe the homogeneous Dirichlet boundary condition. For large
values of ¢, the coefficients in the elliptic part are close to time-independent coefficients in
an integral sense which is described by a certain function « (¢). This includes in particular
situations when the coefficients may take different values on different parts of €2 and the
boundaries between them can move with ¢ but stabilize as + — oo. The main result is an
asymptotic representation of solutions for large 7. A consequence is that fork € L' (0, 00), the
solution behaves asymptotically as the solution to a parabolic system with time-independent
coefficients.
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1 Introduction

Let € denote an open, bounded region in R” with Lipschitz boundary and introduce Q =
Q x (0,00). By x = (x1,...,x,) we denote the variables in 2 and by ¢ the unbounded
variable. We consider the parabolic system

n
w— Y (Ajjuy))y, + Au=0 in Q, o)
i,j=1
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where u = (u1, ..., uy) is a function from Q to CN and Ajj,i,j=1,...,n,and A are
quadratic matrices of size N x N whose elements are measurable functions on Q. We assume
that u satisfies the Dirichlet boundary condition

u(x,t) =0 ifxeodR, t>0 2)
and that
u(x,0) = ¥(x), 3)

where ¥ is a function from (LZ(Q))N.

For general theory of parabolic equations and systems, which include in particular
solvability and uniqueness results, we refer to LadyZenskaja et al. [6], Dautray, Lions [1],
Lions, Magenes [7], Friedman [4] and Eidel’man [2]. Evolution problems of the above type
appear for example in biology and chemistry when studying reaction diffusion problems, see
for example Murray [8] or Fife [3]. We are concerned only with the asymptotic behaviour of
solutions as t — oo. Therefore, we suppose that the matrices A;; and A can be written as

Aij(x, 1) = AR () + A (e, )
and
A, 1) = AD ) + AV (a0,

where Agjl.) and AW are considered as perturbations. We require that the quantity

n
1
k() = > NA Iy + 1AV i, )
i,j=1

is small enough, where
C=Qx (¢, t+1)

and s; and s, are introduced later. We also assume some boundedness and symmetry
conditions on the matrices A;;, AS.J) , A and A©_ Under these assumptions, we have de-
rived an asymptotic representation for # which is presented in Theorem 1.

The asymptotic behaviour of solutions to (1) has been studied under the assumption that
the L>°-norms of Af}) and AW are small for large . This does not cover all physically
relevant situations, for example when the coefficients take different values on different parts
of 2 and the boundaries between them can move with ¢ but stabilize as t — 00. As far as
we know, the situation when the coefficients are small only in the integral sense described
by « has not been investigated before.

2 Problem formulation and results

We assume that the relation (AE?))* = A;?), where A* denotes the adjoint matrix of A,

holds for every pair (i, j) and that (A(O))* = A©, The matrices AE})) fulfill the two-sided
inequality

v lER < D (AYE ) < v S g 5)

i=1 ij=1 i=1
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for all &,&; € CV and some positive constant v. Here we use the notations (i, v) =
Ui +...+uyvy and |u| = (u, u)1/2 foru, v € CV. The matrix A© is supposed to belong

2
to (Lq (Q))N , Where
q €[n,o0] iftn >3
qge2,00] ifn=2 6)
q €[2,00] ifn=1.
Writing A® = AS?) — A, where both matrices A(f) and A? are positive, we require that

A@ is bounded. This means that there exists a constant v such that
0
AL @) < v1, )
where |Ag)) (x)| denotes the matrix norm of A@ (x).

Under the above conditions on the matrices Ag;)) and A© the operator

LO . (WOI’Z(Q))N — (W_I’Z(Q)), defined as

n
LOu=—>" (AVu)y + AOu,
ij=1

has a discrete spectrum with the only limit point co. Let us denote by
AM=...=Aj <Ajy1 ZAj2 = ...

its eigenvalues and by ¢1, ¢2, . . . its corresponding eigenfunctions. They can be chosen in
such way that they form an ON-basis for (Lz(Q))N. Observe that J denotes the multiplicity
of the first eigenvalue. The conditions on A g.)), A©® and Q imply that there existsa p € (2, 00]

such that ¢ € (Wl’P(Q))N, k=1,2,...
We also assume some similar conditions on A;; and A. Namely, the relations A;“A =Aj,

i,j=1,...,n,hold and the matrix A is hermitian. We assume further that (5) also is valid
2
with Ag.)) replaced by A;; and that A € (L{’O’cr(Q))N , where ¢ is the same as in (6) and

r = 2q/(2q — n). Furthermore, writing A = Ay — A_, where A4 and A_ are positive, we
assume that
IMA-[llzoe Q) < v1,

where v; is the same as in (7).
The main characteristic of our perturbation is the function « given by (4), where 51 =
2p/(p —2) and 52 = 2 if n < p, sy is an arbitrary number in (2,n] if n = p and 52 =

2
2np/(np —2n +2p) if n > p. Since AV € (L{;(0))" and A} is bounded, it follows
that « (¢) is finite for every ¢ > 0. We set

ko = supk(t),
>0

and consider perturbations subject to
Ko < x, (®)
where x is a sufficiently small constant depending on n, N, €, AS.)), AD p sy, vand vy.

An exact value of x is difficult to give but the requirement is that » is so small that some
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inequality type conditions appearing in the proof of Theorem 1 are satisfied. Note that x does
(1) 1
not depend on A; ;" or A™.

We let V denote the gradient with respect to the x-variables and define (VOZIOC(Q))N as
the space consisting of vector functions u such that

lule, = esssup [u(, )2 + IVull2c,
t<s<t+1

is finite for every + > 0. It can be proved that problem (1)—(3) has a unique solution in

(V&IOC(Q))N. The main result of our work is the following theorem.

Theorem 1 If the constant x introduced in (8) is small enough, then the unique solution u
in (VOZJOC(Q))N of (1)=(3) can be represented as

J
1
u(x, 1) = e Mt f©+AE) ds (wo zek(t)¢k(x) FV(x, t)), ©)
k=1
where wy is a constant, ® = (01, ...,0y) is an absolutely continuous unit vector, A is a

function belonging to LlloC (0, 00) and
f=(RO,0). (10)

Here, R denotes the J x J matrix with entry (k, 1) equal to

n

Ri = /Q [ DA b b)) + (A, ¢k)] dx.

ij=1
Furthermore, the following estimates are valid:
lwol = CllY 2@

and

t
||A||L1(t,t+l) < CK(t) (/ e_bO(l—S)K(s) dS + K(t)) ,

||®/||L1(,7t+1) < Ck(1),

t
Vie, < ClI¥ Il 20 (e*”(” +/

e 0= () ds + K(t))
-1

fort > 0. Here, bg = Lj+1 — A1 — Ciko and C and C denote constants depending on
n,N, Q, AS)), A, p,s2,v and vy. In (4) we extend Ag})(x, T) and A(l)(x, 7) by O for
T <O.

As a consequence, the asymptotic formula (9) implies the estimate

lule, < Crlly ll2ge 1 Hh IO CrD s,

If, in addition, « € L'(0, 00), then

J
u(x, 1) = e_}‘"(Zbek(x) + o(x, t)),

k=1

@ Springer



J Glob Optim (2008) 40:369-374 373

where by, k = 1, ..., J, are constants which may depend on Afjl.), i,j=1,...,n, AW and
¥ and |w|e, — 0 ast — oo. We have here the same leading term as in the case when
AV =0,i,j=1,...,n, AD = 0.1f, instead, AV =0,

L] =
n 00
Z/ /|A§})(x,z)|dxdr<oo
ol Je

and p = o0, i.e. the gradients of the eigenfunctions belong to L°°(2), then we obtain

J
u(x. 1) = e—kl’(bzekam(x) + o, r)),
k=1

where |w|c, — 0ast — oo and b is a constant which may depend on AS.)
and .

As can be seen from (10), the function f in (9) is not given exactly since its definition con-
tains the unknown vector-valued function ®. If the eigenvalue X is simple, i.e. J = 1, and
A and A;; are real-valued, then ® = 1 and we arrive at the following asymptotic expansion

for u:

Ji,j=1,...,n,

u(x, 1) = e M ERO+AG) ds (wog1 (x) + V(x,1)).

The proofs of Theorem 1 and the subsequent statements can be found in Rand [9], Paper 2.

Ordinary differential equations with unbounded operator coefficients which include
parabolic ones are studied in Kozlov, Maz’ya [5]. In particular, asymptotic results from
Part Il in [5] can give the asymptotic formula (9) under the restriction that A1 is simple and
the quantity

n
1 _
DA ey + 1072 AD 1y,
i,j=1
where p(x) denotes the distance to 92, is small.
The proof of Theorem 1 can very briefly be outlined in the following way. Using spectral
splitting, we write

J
(e, 1) = D hi(Ode(x) +w(x, 1), (11

k=1

where h; = fQ (u, ¢r) dx and w(x, t) is the remainder term. The most part of the proof is
devoted to derivation of a system of first order ordinary differential equations for iy, ..., hy
perturbed by a small integro-differential term and to estimation of w. An important role here
plays a preliminary spectral splitting with J in (11) replaced by M, where M is sufficiently
large. After this, the proof is completed by study of asymptotic behaviour of solutions to the
perturbed system of ordinary differential equations.
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